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LETTER TO THE EDITOR
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Abstract. We performed Monte Carlo simulations of one-dimensional (1D) models of a contact
process with two kinds of absorbing particles. For the model with hard-core repulsion between
domains of opposite species the critical behaviour is the same as that of some other models with
two absorbing states. However, without this repulsion the model presumably does not have the
critical point and the active phase exists for any absorption rate.

Recently, a number of non-equilibrium models of adsorbing particles has been intensively
studied. These studies are partially motivated by experiments, namely by the oxidation
processes [1]. Another motivation is the hope that such simple, although still usually
unsolvable, models might stimulate the theory and classification of non-equilibrium phase
transitions, which are far more complicated than the equilibrium ones.

There is some numerical evidence [2–4] that certain models of adsorbing particles exhibit
the same critical behaviour and constitute the so-called directed percolation universality
class. This universality has been related to the fact that these models possess a single
absorbing state [5]. We should also mention that there are also other models in this
universality class, for example, the Reggeon field theory [6] or the contact process [7]. The
contact process is particularly interesting due to its simplicity which enables its rigorous
analysis.

The natural candidates for another universality class seem to be models with a multiple
absorbing state. This is similar to the equilibrium models, where the number of ground
states is an important parameter determining the universality class of the model. And
indeed, there is some numerical evidence that models with a double-degenerate absorbing
state belong to another universality class. Among such models one should mention the
interacting monomer–dimer model [8], which is a generalization of the model introduced
by Ziff et al [2]. Other models which presumably belong to the same universality class are
probabilistic cellular automata studied by Grassbergeret al [9].

In the present letter we introduce two 1D models of adsorbing particles with a double-
degenerate absorbing state. These models are generalizations of the contact process with
two kinds of particles. The introduced models differ in the interaction rules between
neighbouring domains of particles of different kinds. In the first model adjacent domains
of particles of different kinds are forbidden. Such domains have to be separated by at least
one empty site. This hard-core model will be referred as an H-model. In the second model,
refered as the S-model (soft), there is no such restriction.

Our Monte Carlo simulations suggest that although these two models have the same
double-degenerate absorbing state their behaviour is entirely different. Only the H-model
has a critical point and the anticipated values of the critical exponents while the S-model
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presumably does not have the critical point at all. This means that specifying the number
of absorbing states is not sufficient to predict the behaviour of a given model.

Let us assume that each site of a chain can be empty or occupied by a+ or − particle.
The dynamical rules are as follows. Empty sites become occupied by particles at the rateλ.
The type of adsorbing particle is chosen at random. However, in the H-model, adsorption
attempts which would result in adjacent domains of particles of different kinds are rejected.
The desorbing rules are the same in both models: particles of a given type desorb at a rate
equal to the fraction of neigbouring sites being empty or occupied by particles of another
type (the last condition is relevant only for the S-model). This means that a given particle
surrounded only by particles of its own type cannot desorb. Moreover, one can see that
when a certain part of the chain is occupied by particles of only one type then the dynamical
rules in that part (for any of these models) are exactly the same as that of the contact process.

One expects that for smallλ both models will be in the active phase with the density of
particlesρH,S < 1. With the increase ofλ, the density of particles will also increase and one
might expect that at certainλC, probably different for each model, we will have a transition
into one of the two absorbing states; i.e. with all sites occupied by + or – particles. To check
these predictions we performed Monte Carlo simulations and our results are presented in
figures 1–4.

Figure 1. The density of particlesρ as a function of adsorption rateλ for the H-model (——)
and the S-model (- - - -). The statistical errors are smaller than the size of the plotting symbols.

In figure 1 we have shown the density of particlesρ as a function of the adsorption rate
λ. We present our results for the active phase and only for those values ofλ for which we
could reach satisfactory accuracy. Despite the apparent similarity to the contact process, the
numerical calculations are much more difficult, especially for largeλ. For λ = 0.9–0.93 for
the H-model and forλ = 1.20–1.35 for the S-model, we simulated chains of length up to 104

and performed several independent runs of up to 5×106 Monte Carlo steps. Such extensive
simulations were neccessary because for largeλ the dynamics has a very large relaxation
time. The reason is that in this case the chain is occupied by large neighbouring domains
(separated in the H-model by some empty sites) which might change their configurations
only through flips at the boundaries (since their interiors are inactive).
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The results presented in figure 1 require some comments. First, let us notice that for
any configuration of particles the number of sites where the adsorbtion attempt would be
successful is larger for the S-model than for the H-model. This suggests thatρS > ρH. Our
simulations show that this prediction is true, but only forλ < 0.8.

Why do we haveρS < ρH for λ > 0.8? The explanation of such, contradictory at first,
behaviour is as follows. Increasingλ, we increase the number of adsorbtion attempts. In
the smallλ regime this leads to the almost linear increase of the densityρ in both models.
However, whenλ is large enough a new mechanism comes into play in the H-model.
Namely, due to the hard-core repulsion between domains, when the density is large it is
difficult to put more particles into the steady state. There is, however, one way in which
the H-model can increase the density, namely it has to eliminate small domains. In such
a way, the number of sites which separate domains of opposite particles will decrease and
the density will increase. We would like to emphasize that this coarsening is related to the
competition of two absorbing states which cannot be adjacent. The increase of the domain
size with increasingλ also takes place in the S-model but here, due to the absence of the
repulsion, there is no competition: the particles can adsorb at any empty site and as a result
the increase ofρ is not singular.

Assuming that in the vicinity of the critical pointλC the density has the power-law
behaviour 1− ρH ∼ (λC − λ)β and using the values ofρH in the rangeλ = 0.875–0.93, we
estimate thatλC ≈ 0.954 andβ ≈ 0.89. The estimation ofβ strongly suggests that the H-
model belongs to the same universality class as some other models with a double-degenerate
absorbing state for which very similar values ofβ have been reported [8, 10].

The concave shape of the density, even for largeλ, in the S-model suggests that there
is no phase transition in this model and this seems to us more likely than the possibility
that the S-model has a critical point withβ > 1 (to our knowledge there is no model of
this kind with β > 1).

We also performed so-called dynamic Monte Carlo simulations to determine some other
properties of these models. However, our calculations are not aimed at the most precise
estimations of the critical properties but rather at their qualitative examination.

An important quantity in such non-equlibrium models is the characteristic timeτ defined
for the finite systems as the averaged time needed for entering the absorbing state. At the
critical point one expects that this quantity increases in a power-law way with the system
size, τ ∼ Lφ . Kim and Park’s estimation ofφ for the interacting monomer–dimer model
givesφ = 1.734 [8].

In figure 2 we plotted on a logarithmic scale the characteristic timeτ for the H-model
as a function of the system sizeL for several values ofλ. Each point has been obtained
by averaging over at least 2000 measurements; the initial configurations have had all sites
empty. The increasing slope forλ = 0.8 < λC confirms that the system is in the active
phase withτ increasing exponentially with the system size. From the slope estimated from
the results obtained for the three largestL for λ = λC, we obtainφ ≈ 1.75. This result is in
very good agreement with Kim and Park’s result, which gives further support to our claim
that the H-model belongs to the same universality class as their interacting monomer–dimer
model.

For λ > λC we haveτ ∼ L2 with very good accuracy; the caseλ = 1.5 is shown
in figure 2. Such dependence can be easily understood. Forλ > λC the empty chain
quickly becomes filled with domains separated by narrow holes (holes between neighbouring
domains of the same kind of particles quickly become filled with particles; slowly evolving
configurations consist of neighbouring domains of different particles). Further dynamics
leads to the elimination of the smallest domains and to the enlargement of the remaining
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Figure 2. The logarithm of the characteristic timeτ as a function of the logarithm of the system
sizeL for the H-model forλ = 0.8 (• ), 0.954(= λC) (�), and 1.5 (∗). The slope of the dashed
line which is used as an eye guide is equal to two exactly.

ones. After some initial time the chain will be filled with very few domains of a size
comparable to the system size. Approximately, the domain dynamics in our model can be
regarded as a random walk with walkers placed in the holes between domains. This is
actually an annihilating random walk since the elimination of a certain domain corresponds
to the annihilation of two random walkers. Since the averaged time needed for a random
walker to move along a distance of the order ofL increases asL2 thusτ will scale in the
same way. The relation with the random walk will also be discussed below.

Let us emphasize that the asymptotic increase with the system size of the characterisitic
time is slowest at criticality. This is in contrast, for example, to the usual contact process,
where in the absorbing phaseτ increases much slower than at criticality.

In figure 3 we present the same quantity for the S-model. One can see that both for
λ = 1.3 and 1.35 the curves have increasing slope which for the largestL exceeds 2. We
have to admit, however, that forλ = 1.35 the evidence is rather slight and simulations of
larger systems would be needed to obtain convincing results.

Such increasing slope suggests that asymptoticallyτ in the S-model has exponential
dependence and for these values ofλ the system is in the active phase. This confirms the
results presented in figure 1. However, to confirm that the S-model remains in the active
phase even for largerλ we would need much more extensive simulations.

We also measured the time dependence of the survival probabilityP(t). This quantity
describes the probability that after timet the system did not reach the absorbing phase. The
initial configuration in these simulations consists of one empty site and all the other sites
occupied by particles of the same kind. One expects that at criticalityP(t) has a power-law
decay,P(t) ∼ t−δ.

Our results for the H-model are presented in figure 4. From the slope of the curve for
λ = λC we estimateδ = 0.29. This result is again in very good agreement with estimations
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Figure 3. The logarithm of the characteristic timeτ as a function of the logarithm of the system
size L for the S-model forλ = 1.3 (• ) and 1.35(�). The slope of the dashed line which is
used as an eye guide is equal to two exactly.

for the interacting monomer–dimer models, as well as with some other estimations for
models which presumably also belong to the same universality class [11]. We checked that
for λ < λC the slope diminishes to zero, which is the expected behaviour in the active
phase.

However, the behaviour forλ > λC is somehow unexpected. Namely, from the slope in
figure 4 we estimate that in the absorbing phase the survival probability also has power-law
behaviour but with the exponent1

2. This is in contrast with most models of this type, where
in the absorbing phase the effective exponentδ increases to infinity. Such a value ofδ means
that again the random walk is at work. This behaviour can be understood if we assume
that the long living configurations are those which, in the initial stage, increase the empty
hole and then fill it with particles of the opposite kind. The situation is shown in figure 5.
Assigning random walkers at the boundary of the inner domain (this is an approximate
procedure), we easily deduce [12] that indeed the survival probability of random walkers
will scale in time with the exponent12.

We do not present results forP(t) for the S-model. For smallλ(< 1.3) our results show
vanishing slope which confirms that the model is in the active phase. For largeλ(> 1.35)
our results are bending but the slope is still positive. Thus, from the behaviour of the
survival probability we cannot confirm definitely that the S-model is in the active phase for
suchλ.

The main results of the present letter can be summarized as follows. Although both H-
and S-models have two absorbing states, only the H-model has a critical point at a finite
adsorbtion rateλ and the expected values of critical exponents. Most likely the S-model does
not have the phase transition at finiteλ. The factor responsible for the phase transition in
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Figure 4. The logarithmic plot of the survival probabilityP(t) as a function oft for the H-model
for λ = 0.954(= λC) (——), 1.0 (- - - -) and 1.1 (– – –).

Figure 5. (a) The initial configuration used to determineP(t). (b) The structure of the majority
of the long living configurations. Random walkers are denoted as full circles.

the H-model is the hard-core repulsion between domains of opposite kinds of particles. This
repulsion in the large-λ regime implies competition of two absorbing states and ‘enforces’
the coarsening of the active phase as the only way to increase the density in the H-model.
Surprisingly, this repulsion is also responsible for the lower density of particles in the H-
model in the small-λ regime. Since there is no such mechanism of competition in the
S-model, there is thus no critical point in this model. Our simulations show that specifying
merely the multiplicity of the absorbing state is not enough to determine the behaviour of
a given model.

Both H- and S-models can be generalized to an arbitrary number of kinds of particles.
To examine properties of such multi-species models is left as a future problem.

The research described in the present paper is supported by the grant KBN 8 T11F 015 09.
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